Ceph

A Journey to 1 TiB/s

Reprinted from the original article posted on ceph.io.
Mark Nelson, Clyso Inc.
January 19, 2024

https://ceph.io/en/news/blog/2024/ceph-a-journey-to-1tibps/
https://ceph.io

CLUSTER SETUP

I can’t believe they figured it out first. That was the thought going through my head
back in mid-December after several weeks of 12-hour days debugging why this cluster
was slow. This was probably the most intense performance analysis I'd done since
Inktank. Half-forgotten superstitions from the 90s about appeasing SCSI gods flitted
through my consciousness. The 90s? Man, I'm getting old. We were about two-thirds
of the way through the work that would let us start over at the beginning. Speaking
of which, I'll start over at the beginning.

Back in 2023 (I almost said earlier this year until I remembered we're in 2024), Clyso
was approached by a fairly hip and cutting edge company that wanted to transition
their HDD backed Ceph cluster to a 10 petabyte NVMe deployment. They were imme-
diately interesting. They had no specific need for RBD, RGW, or CephFS. They had put
together their own hardware design, but to my delight approached us for feedback
before actually purchasing anything. They had slightly unusual requirements. The
cluster had to be spread across 17 racks with 4U of space available in each. Power,
cooling, density, and vendor preference were all factors. The new nodes needed to be
migrated into the existing cluster with no service interruption. The network, however,
was already built, and it's a beast. It's one of the fastest Ethernet setups I've ever seen.
I knew from the beginning that I wanted to help them build this cluster. T also knew
we'd need to do a pre-production burn-in and that it would be the perfect opportunity
to showcase what Ceph can do on a system like this. What follows is the story of how
we built and tested that cluster and how far we were able to push it.

Acknowledgments

I would first like to thank our amazing customer who made all of this possible. You
were a pleasure to work with! Thank you as well for allowing us here at Clyso to share
this experience with the Ceph community. It is through this sharing of knowledge
that we make the world a better place. Thank you to IBM/Red Hat and Samsung for
providing the Ceph community with the hardware used for comparison testing. It was
invaluable to be able to evaluate the numbers we were getting against previous tests
from the lab. Thank you to all of the Ceph contributors who have worked tirelessly to
make Ceph great! Finally, thank you especially to Anthony D’Atri and Lee-Ann Pullar
for their amazing copyediting skills!

Cluster Setup

When the customer first approached Clyso, they proposed a configuration utilizing
34 dual-socket 2U nodes spread across 17 racks. We provided a couple of alterna-
tive configurations from multiple vendors with a focus on smaller nodes. Ultimately
they decided to go with a Dell architecture we designed, which quoted at roughly 13%
cheaper than the original configuration despite having several key advantages. The
new configuration has less memory per OSD (still comfortably 12GiB each), but faster
memory throughput. It also provides more aggregate CPU resources, significantly
more aggregate network throughput, a simpler single-socket configuration, and uti-
lizes the newest generation of AMD processors and DDR5 RAM. By employing smaller

cL.,'so 1

https://www.clyso.com
https://ibm.com
https://redhat.com
https://samsung.com

TESTING SETUP

nodes, we halved the impact of a node failure on cluster recovery.

The customer indicated they would like to limit the added per-rack power consumption
to around 1000-1500 watts. With 4 of these nodes per rack, the aggregate TDP is
estimated to be at least 1120 Watts plus base power usage, CPU overage peaks, and
power supply inefficiency. IE it's likely we're pushing it a bit under load, but we don't
expect significant deviation beyond the acceptable range. If worse came to worst, we
estimated we could shave off roughly 100 watts per rack by lowering the processor
CTDP.

Specs for the system are shown below:

Nodes 68 x Dell PowerEdge R6615

CPU 1 X AMD EPYC 9454P 48C/96T

Memory 192GiB DDR5

Network 2 x 100GbE Mellanox ConnectX-6

NVMe 10 x Dell 15.36TB Enterprise NVMe Read Intensive AG
OS Version Ubuntu 20.04.6 (Focal)

Ceph Version Quincy v17.2.7 (Upstream Deb Packages)

An additional benefit of utilizing 1U Dell servers is that they are essentially a newer
refresh of the systems David Galloway and I designed for the upstream Ceph perfor-
mance lab. These systems have been tested in a variety of articles over the past couple
of years. It turns out that there was a major performance-impacting issue that came
out during testing that did not affect the previous generation of hardware in the up-
stream lab but did affect this new hardware. We'll talk about that more later.

Without getting into too many details, I will reiterate that the customer’s network
configuration is very well-designed and quite fast. It easily has enough aggregate
throughput across all 17 racks to let a cluster of this scale really stretch its legs.

Testing Setup

To do the burn-in testing, ephemeral Ceph clusters were deployed and FIO tests
were launched using CBT. CBT was configured to deploy Ceph with several modified
settings. OSDs were assigned an 8GB osd_memory_target. In production, a higher
osd_memory_target Should be acceptable. The customer had no need to test block or S3
workloads, so one might assume that rabos bench would be the natural benchmark
choice. In my experience, testing at a large scale with rabos bench is tricky. It's tough
to determine how many instances are needed to saturate the cluster at given thread
counts. I've run into issues in the past where multiple concurrent pools were needed
to scale performance. I also didn't have any preexisting rabos bench tests handy to
compare against. Instead, we opted to do burn-in testing using the same 1ibrbd
backed FIO testing we've used in the upstream lab. This allowed us to partition the
cluster into smaller chunks and compare results with previously published results.
FIO is also very well known and well-trusted.

A major benefit of the 1ibrbd engine in FIO (versus utilizing FIO with kernel RBD) is
that there are no issues with stale mount points potentially requiring system reboots.
We did not have IPMI access to this cluster and we were under a tight deadline to

cL',’so 2

https://ceph.io/en/news/blog/2023/ceph-encryption-performance/
https://ceph.io/en/news/blog/2023/reef-osds-per-nvme/
https://github.com/ceph/cbt/

TESTING SETUP

complete tests. For that reason, we ultimately skipped kernel RBD tests. Based
on previous testing, however, we expect the aggregate performance to be roughly
similar given sufficient clients. We were able, however, to test both 3X replication and
6+2 erasure coding. We also tested msgr V2 in both unencrypted and secure mode
using the following Ceph options:

ms_client_mode = secure
ms_cluster_mode = secure
ms_service_mode = secure
ms_mon_client_mode = secure
ms_mon_cluster_mode = secure

ms_mon_service_mode = secure

OSDs were allowed to use all cores on the nodes. FIO was configured to first pre-fill
RBD volume(s) with large writes, followed by 4MB and 4KB IO tests for 300 seconds
each (60 seconds during debugging runs). Certain background processes, such as
scrub, deep scrub, PG autoscaling, and PG balancing were disabled.

A Note PG counts

Later in this article, you'll see some eye-popping PG counts being tested. This is in-
tentional. We know from previous upstream lab testing that the PG count can have a
dramatic effect on performance. Some of this is due to clumpiness in random distri-
butions at low sample (PG) counts. This potentially can be mitigated in part through
additional balancing. Less commonly discussed is PG lock contention inside the OSD.
We've observed that on very fast clusters, PG lock contention can play a significant role
in overall performance. This unfortunately is less easily mitigated without increasing
PG counts. How much does PG count actually matter?

Upstream Lab 4KB FIO Random 10O Performance

randread @ randwrite

6.0M
4.0M
&)
o
(©]
2.0M |
'511[122‘948 4096 8192 16384 32768
N YT ST L e Y
0.0M
0 10000 20000 30000

PGs in RBD Pool

cL',’so 3

https://www.profmatt.com/clumpy

A ROUGH START

With just 60 OSDs, Random read performance scales all the way up to 16384 PGs on
an RBD pool using 3X replication. Writes top out much earlier, but still benefits from
up to 2048 PGs.

Let me be clear: You shouldn’t go out and blindly configure a production Ceph cluster
to use PG counts as high as we are testing here. That's especially true given some
of the other defaults in Ceph for things like PG log lengths and PG stat updates. I
do, however, want to encourage the community to start thinking about whether the
conventional wisdom of 100 PGs per OSD continues to make sense. I would like us
to rethink what we need to do to achieve higher PG counts per OSD while keeping
overhead and memory usage in check. I dream about a future where 1000 PGs per
OSD isn't out of the ordinary, PG logs are auto-scaled on a per-pool basis, and PG
autoscaling is a far more seldom-used operation.

A Rough Start

We were first able to log into the new hardware the week after Thanksgiving in the
US. The plan was to spend a week or two doing burn-in validation tests and then in-
tegrate the new hardware into the existing cluster. We hoped to finish the migration
in time for the new year if everything went to plan. Sadly, we ran into trouble right at
the start. The initial low-level performance tests looked good. Iperf network testing
showed us hitting just under 200Gb/s per node. Random sampling of a couple of the
nodes showed reasonable baseline performance from the NVMe drives. One issue we
immediately observed was that the operating system on all 68 nodes was accidentally
deployed on 2 of the OSD drives instead of the internal Dell BOSS m.2 boot drives.
We had planned to compare results for a 30 OSD configuration (3 nodes, 10 OSDs per
node) against the results from the upstream lab (5 nodes, 6 OSDs per node). Instead,
we ended up testing 8 NVMe drives per node. The first Ceph results were far lower
than what we had hoped to see, even given the reduced OSD count.

Initial Validation Tests - FIO 4MB Throughput

Upstream Lab Customer Hardware
50 GiB/s
40 GiB/s
30 GiB/s

20 GiB/s

Throughput

10 GiB/s

0 GiB/s

Random Reads Random Writes

cL.,'so 4

SPOOKY BEHAVIOR

Initial Validation Tests - FIO 4KB IOPS

Upstream Lab Customer Hardware

3M

2M
7]
o
()

1™

oM

Random Reads Random Writes

The only result that was even close to being tolerable was for random reads, and that
still wasn't great. Clearly, something was going on. We stopped running 3-node tests
and started looking at single-node, and even single OSD configurations.

That's when things started to get weird.

Spooky Behavior

As we ran different combinations of 8-OSD and 1-OSD tests on individual nodes in the
cluster, we saw wildly different behavior, but it took several days of testing to really un-
derstand the pattern of what we were seeing. Systems that initially performed well in
single-OSD tests stopped performing well after multi-OSD tests, only to start working
well again hours later. 8-OSD tests would occasionally show signs of performing well,
but then perform terribly for all subsequent tests until the system was rebooted. We
were eventually able to discern a pattern on fresh boot that we could roughly repeat
across different nodes in the cluster:

Step 0SDS 4MB Randread (MB/s) 4MB Randwrite (MB/s)
Boot

1 10SD 5716 3998
2 80SDs 3190 2494
3 10SD 523 3794
4 80SDs 2319 2931
5 10SD 551 3796
20-30 minute pause

6 10SD 637 3724
20-30 minute pause

7 10SD 609 3860
20-30 minute pause

8 10SD 362 3972
20-30 minute pause

9 10SD 6581 3998
20-30 minute pause

10 10SD 6350 3999
20-30 minute pause

1 10SD 6536 4001

The initial single-OSD test looked fantastic for large reads and writes and showed

cL.,'so 5

SPOOKY BEHAVIOR

nearly the same throughput we saw when running FIO tests directly against the drives.
As soon as we ran the 8-OSD test, however, we observed a performance drop. Subse-
quent single-OSD tests continued to perform poorly until several hours later when
they recovered. So long as a multi-OSD test was not introduced, performance re-
mained high.

Confusingly, we were unable to invoke the same behavior when running FIO tests
directly against the drives. Just as confusing, we saw that during the 8 OSD test, a
single OSD would use significantly more CPU than the others:

4MB Random Read

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
511067 root 20 @ 9360000 7.2g 33792 S 1180 3.8 15:24.32 ceph-osd
515664 root 20 @ 9357488 7.29 34560 S 523.6 3.8 13:43.86 ceph-osd
513323 root 20 0 9145820 6.4g 34560 S 460.0 3.4 13:01.12 ceph-osd
514147 root 20 @ 9826592 6.6g9 33792 S 378.7 3.5 9:56.59 ceph-osd
516488 root 20 @ 9188244 6.8g 34560 S 378.4 3.6 10:29.23 ceph-osd
518236 root 20 @ 9390772 6.9g 33792 S 361.0 3.7 9:45.85 ceph-osd
511779 root 20 @ 8329696 6.1g 33024 S 331.1 3.3 10:07.18 ceph-osd
516974 root 20 @ 8984584 6.7g9 34560 S 301.6 3.6 9:26.60 ceph-osd

A wallclock profile of the OSD under load showed significant time spent in io_submit,
which is what we typically see when the kernel starts blocking because a drive's queue
becomes full.

Example tp_osd_tp Thread io_submit Wallclock Profile

+ 31.00% BlueStore::readv(boost::intrusive_ptr<ObjectStore::CollectionImpl>&, g...
+ 31.00% BlueStore::_do_readv(BlueStore::Collection*, boost::intrusive_ptr<Blu...
+ 24.00% KernelDevice: :aio_submit(IOContext*)
|+ 24.00% aio_queue_t::submit_batch(std::_List_iterator<aio_t>, std::_List_it...
| + 24.00% io_submit
| + 24.00% syscall

Why would running an 8 OSD test cause the kernel to start blocking in io_submit dur-
ing future single OSD tests? It didn't make very much sense. Initially, we suspected
throttling. We saw that with the default cooling profile in the bios, several of the core
complexes on the CPU were reaching up to 96 degrees Celsius. We theorized that per-
haps we were hitting thermal limits on either the CPU or the NVMe drives during the
8-0SD tests. Perhaps that left the system in a degraded state for a period of time be-
fore recovering. Unfortunately, that theory didn't pan out. AMD/Dell confirmed that
we shouldn't be hitting throttling even at those temperatures, and we were able to dis-
prove the theory by running the systems with the fans running at 100% and a lower
CTDP for the processor. Those changes kept them consistently around 70 degrees
Celsius under load without fixing the problem.

For over a week, we looked at everything from bios settings, NVMe multipath, low-
level NVMe debugging, changing kernel/Ubuntu versions, and checking every single

cL',’so 6

THE THREE FIXES

kernel, OS, and Ceph setting we could think of. None these things fully resolved the
issue.

We even performed blktrace and iowatcher analysis during “good” and “bad” single
OSD tests, and could directly observe the slow IO completion behavior:

Blkparse Output - Good vs Bad

Timestamp (good) Offset+Length (good) Timestamp (bad) Offset+Length (bad)

10.00002043 1067699792 + 256 [0] 10.0013855 1206277696 + 512 [0]
10.00002109 1153233168 + 136 [0] 10.00138801 1033429056 + 1896 [0]
10.00016955 984818880 + 8 [0] 10.00209283 1031056448 + 1536 [0]
10.00018827 1164427968 + 1936 [0] 10.00327372 1220466752 + 2048 [0]
10.0003024 1084064456 + 1928 [0] 10.00328869 1060912704 + 2048 [0]
10.00044238 1067699280 + 512 [0] 10.01285746 1003849920 + 2048 [0]
10.00046659 1040160848 + 128 [0] 10.0128617 1096765888 + 768 [0]
10.00053302 1153233312+ 1712[0] 10.01286317 1060914752 + 720 [0]
10.00056482 1153229312+ 2000 [0] 10.01287147 1188736704 + 512 [0]
10.00058707 1067694160 + 64 [0] 10.01287216 1220468800 + 1152 [0]
10.00080624 1067698000 + 336 [0] 10.01287812 1188735936 + 128 [0]
10.00111046 1145660112 + 2048 [0] 10.01287894 1188735168 + 256 [0]
10.00118455 1067698344 + 424 [0] 10.0128807 1188737984 + 256 [0]
10.00121413 984815728 + 208 [0] 10.01288286 1217374144 + 1152 [0]

The Three Fixes

At this point, we started getting the hardware vendors involved. Ultimately it turned
out to be unnecessary. There was one minor, and two major fixes that got things back
on track.

Fix One

Thefirst fixwas an easy one, but only got us a modest 10-20% performance gain. Many
years ago it was discovered (Either by Nick Fisk or Stephen Blinick if I recall) that Ceph
is incredibly sensitive to latency introduced by CPU c-state transitions. A quick check of
the bios on these nodes showed that they weren't running in maximum performance
mode which disables c-states. This was a nice win but not enough to get the results
where we wanted them.

Fix Two

By the time I was digging into the blktrace results shown above, I was about 95% sure
that we were either seeing an issue with the NVMe drives or something related to the
PCle root complex since these systems don't have PCle switches in them. I was busy
digging into technical manuals and trying to find ways to debug/profile the hardware.
A very clever engineer working for the customer offered to help out. I set up a test
environment for him so he could repeat some of the same testing on an alternate set
of nodes and he hit a home run.

While I had focused primarily on wallclock profiles and was now digging into trying
to debug the hardware, he wanted to understand if there was anything interesting

cL.,'so 7

https://infohub.delltechnologies.com/p/bios-settings-for-optimized-performance-on-next-generation-dell-poweredge-servers/

THE THREE FIXES

happening kernel side (which in retrospect was the obvious next move!). He ran a
perf profile during a bad run and made a very astute discovery:

77.37% tp_osd_tp [kernel.kallsyms] [k] native_queued_spin_lock_slowpath
|
---native_queued_spin_lock_slowpath

--77.36%--_raw_spin_lock_irqgsave

--61.10%--alloc_iova
alloc_iova_fast
iommu_dma_alloc_iova.isra.@
iommu_dma_map_sg
__dma_map_sg_attrs
dma_map_sg_attrs

nvme_map_data

|

|

|

|

|

|

|

|

| nvme_queue_xq
| __blk_mqg_try_issue_directly

| blk_mq_request_issue_directly

| blk_mq_try_issue_list_directly

| blk_mq_sched_insert_requests

| blk_mq_flush_plug_list

| blk_flush_plug_list

| |

| | --56.54%--blk_mq_submit_bio

A huge amount of time is spent in the kernel contending on a spin lock while updating
the IOMMU mappings. He disabled IOMMU in the kernel and immediately saw a huge
increase in performance during the 8-node tests. We repeated those tests multiple
times and repeatedly saw much better 4MB read/write performance. Score one for
the customer. There was however still an issue with 4KB random writes.

Fix Three

After being beaten to the punch by the customer on the IOMMU issue, I was almost
grateful that we had an additional problem to solve. 4K random write performance
had improved with the first two fixes but was still significantly worse than the upstream
lab (even given the reduced node/drive counts). I also noticed that compaction was
far slower than expected in RocksDB. There previously have been two significant cases
that presented similarly and appeared to be relevant:

1) Ceph can be very slow when not properly compiled with TCMalloc support.
2) Ceph can be very slow when not compiled with the right cmake flags and com-
piler optimizations.

Historically this customer used the upstream Ceph Ubuntu packages and we were
still using them here (rather than self-compiling or using cephadm with containers). I
verified that TCMalloc was compiled in. That ruled out the first issue. Next, I dug out
the upstream build logs for the 17.2.7 Ubuntu packages. That's when I noticed that

cL',’so 8

THE THREE FIXES

we were not, in fact, building RocksDB with the correct compile flags. It's not clear
how long that's been going on, but we've had general build performance issues going
back as far as 2018.

It turns out that Canonical fixed this for their own builds as did Gentoo after seeing
the note I wrote in do_cmake.sh over 6 years ago. It's quite unfortunate that our up-
stream Deb builds have suffered with this for as long as they have, however, it at least
doesn't appear to affect anyone using cephadm on Debian/Ubuntu with the upstream
containers. With the issue understood, we built custom 17.2.7 packages with a fix in
place. Compaction time dropped by around 3X and 4K random write performance
doubled (Though it's a bit tough to make out in the graph):

All Fixes Validation Tests - FIO 4MB Throughput

Upstream Lab Initial Conifg IOMMU Disabled Ubuntu Fix
50 GiB/s
40 GiB/s
30 GiB/s

20 GiB/s

Throughput

10 GiB/s

0 GiB/s
Random Reads Random Writes

All Fixes Validation Tests - FIO 4KB IOPS

Upstream Lab Initial Conifg IOMMU Disabled Ubuntu Fix
3M
2M
7]
o
(@)
1™
oM
Random Reads Random Writes

4KB random write performance was still lower than I wanted it to be, but at least now
we were in roughly the right ballpark given that we had fewer OSDs, only 3/5 the num-
ber of nodes, and fewer (though faster) cores per OSD. At this point, we were nearing
winter break. The customer wanted to redeploy the OS to the correct boot drives and
update the deployment with all of the fixes and tunings we had discovered. The plan
was to take the holiday break off and then spend the first week of the new year fin-
ishing the burn-in tests. Hopefully, we could start migrating the cluster the following

cL',’so 9

https://github.com/ceph/ceph/pull/25478
https://bugs.launchpad.net/ubuntu/+source/ceph/+bug/1894453
https://bugs.gentoo.org/733316

THE FIRST WEEK OF 2024

week.

The First week of 2024

On the morning of January 2nd, I logged into Slack and was greeted by a scene I'll de-
scribe as moderately controlled chaos. A completely different cluster we are involved
in was having a major outage. Without getting too into the details, it took 3 days to
pull that cluster back from the brink and get it into a stable and relatively healthy state.
It wasn't until Friday that I was able to get back to performance testing. I was able to
secure an extra day for testing on Monday, but this meant I was under a huge time
crunch to showcase that the cluster could perform well under load before we started
the data migration process.

Fate Smiles

I worked all day on Friday to re-deploy CBT and recreate the tests we ran previously.
This time I was able to use all 10 of the drives in each node. I also bumped up the
number of clients to maintain an average of roughly 1 FIO client with an io_depth of
128 per OSD. The first 3 node test looked good. With 10 OSDs per node, We were
achieving roughly proportional (IE higher) performance relative to the previous tests.
I knew I wasn't going to have much time to do proper scaling tests, so I immediately
bumped up from 3 nodes to 10 nodes. I also scaled the PG count at the same time and
used CBT to deploy a new cluster. At 3 nodes [saw 63GiB/s for 4MB random reads. At
10 Nodes, I saw 213.5GiB/s. That's almost linear scaling at 98.4%. It was at this point
that I knew that things were finally taking a turn for the better. Of the 68 nodes for
this cluster, only 63 were up at that time. The rest were down for maintenance to fix
various issues. I split the cluster roughly in half, with 32 nodes (320 OSDs) in one half,
and 31 client nodes running 10 FIO processes each in the other half. I watched as CBT
built the cluster over roughly a 7-8 minute period. The initial write prefill looked really
good. My heart soared. We were reading data at 635 GiB/s. We broke 15 million 4k
random read IOPS. While this may not seem impressive compared to the individual
NVMe drives, these were the highest numbers I had ever seen for a ~300 OSD Ceph
cluster.

cL',’so 10

THE FIRST WEEK OF 2024

Post-Fixes OSD Scaling - FIO 4MB Throughput
LibRBD, 3X Rep, 3, 10, and 32 OSD Nodes, 3, 10, and 31 client nodes, up to 32K PGs

@ Random Reads @ Random Writes

1000 GiB/s
800 GiB/s
600 GiB/s
400 GiB/s
200 GiB/s

0 GiB/s

Throughput

Post-Fixes OSD Scaling - FIO 4KB |IOPS

LibRBD, 3X Rep, 3, 10, and 32 OSD Nodes, 3, 10, and 31 client nodes, up to 32K PGs
@® Random Reads @ Random Writes
20M

I0PS

Ialso plotted both average and tail latency for the scaling tests. Both looked consistent.
This was likely due to scaling the PG count and the FIO client count at the same time
as OSDs. These tests are very I0-heavy however. We have so much client traffic that
we are likely well into the inflection point where performance doesn't increase while
latency continues to grow as more IO is added.

cL',’so 11

A PARTIALLY OPERATIONAL DEATH STAR

Post-Fixes OSD Scaling - FIO 4KB Average Latency

Random Reads @ Random Writes

Avg Latency (ms)

Post-Fixes OSD Scaling - FIO 4KB 99% Latency

Random Reads @ Random Writes

200 T Yru s
R (U STE L e A S A ALt Y EEE ST PR PP SOPL A SO S SOt S o ®
@ 150 @
E
oy
g 100
5
3 s0
=
(2]
S o0
O O O O O O O O O O O O O O OO0 O O O o o oo oo oo o o o o
M < N O M 00 O O «~ N MO < 10D O 0 0O O «~ AN MO < I © N~ 0 OO0 O «~ N
rrrrrrrrrr AN AN AN AN N N N N N DN OO o o™

I showed these results to my colleague Dan van der Ster who previously had built the
Ceph infrastructure at CERN. He bet me a beer (Better be a good one Dan!) if I could hit
1 TiB/s. I told him that had been my plan since the beginning.

A Partially Operational Death Star

I had no additional client nodes to test the cluster with at full capacity, so the only real
option was to co-locate FIO processes on the same nodes as the OSDs. On one hand,
this provides a very slight network advantage. Clients will be able to communicate
with local OSDs 1/63rd of the time. On the other hand, we know from previous testing
that co-locating FIO clients on OSD nodes isn't free. There's often a performance hit,
and it wasn't remotely clear to me how much of a hit a cluster of this scale would take.

I built a new CBT configuration targeting the 63 nodes I had available. Deploying the
cluster with CBT took about 15 minutes to stand up all 630 OSDs and build the pool. I
waited with bated breath and watched the results as they came in.

cL',’so 12

A PARTIALLY OPERATIONAL DEATH STAR

Full Cluster Initial Tuning - FIO 4MB Throughput
LibRBD, 3X Rep, 64K PGs, 378 Client Procs

[Default Tuning 4 Shards, 2 Threads/Shard, 2 Msgr Threads, Reef RocksDB Tuning

1000 GiB/s

800 GiB/s

3 600GiBls
-y
(2]

3 400GiBls
e
'_

0 GiB/s

Random Reads Random Writes

Full Cluster Initial Tuning - FIO 4KB IOPS

LibRBD, 3X Rep, 64K PGs, 378 Client Procs

[Default Tuning 4 Shards, 2 Threads/Shard, 2 msgr Threads, Reef RocksDB Tunings
30M

20M

I0PS

10M

Random Reads Random Writes

oM

Around 950GiB/s. So very very close. It was late on Friday night at this point, so I
wrapped up and turned in for the night. On Saturday morning I logged in and threw
a couple of tuning options at the cluster: Lowering OSD shards and async messenger
threads while also applying the Reef RocksDB tunings. As you can see, we actually
hurt read performance a little while helping write performance. In fact, random write
performance improved by nearly 20%. After further testing, it looked like the reef
tunings were benign though only helping a little bit in the write tests. The bigger
effect seemed to be coming from shard/thread changes. At this point, I had to take a
break and wasn't able to get back to working on the cluster again until Sunday night.
I tried to go to bed, but I knew that I was down to the last 24 hours before we needed
to wrap this up. At around midnight I gave up on sleep and got back to work.

I mentioned earlier that we know that the PG count can affect performance. I decided
to keep the “tuned” configuration from earlier but doubled the number of PGs. In the
first set of tests, I had dropped the ratio of clients to OSDs down given that we were co-
locating them on the OSD nodes. Now Itried scaling them up again. 4MB random read
performance improved slightly as the number of clients grew, while small random
read IOPS degraded. Once we hit 8 FIO processes per node (504 total), sequential
write performance dropped through the floor.

cL',’so 13

A PARTIALLY OPERATIONAL DEATH STAR

Full Cluster Client Process Scaling - FIO 4MB Throughput
LibRBD, 3XRep, 128K PGs, 4 Shards, 2 Threads/Shard, 2 Msgr Threads, Reef RocksDB Tuning

[378 ClientProcs 441 Client Procs 504 Client Procs

1000 GiB/s

800 GiB/s

3 600GiBls
-y
(2]

3 400GiBls
e
'_

200 GiB/s .
0 GiB/s
Random Reads Random Writes

Full Cluster Client Process Scaling - FIO 4KB IOPS
LibRBD, 3X Rep, 128K PGs, 4 Shards, 2 Threads/Shard, 2 Msgr Threads, Reef RocksDB Tuning

[378 ClientProcs 441 Client Procs 504 Client Procs

30M

20M
%]
o
o

10M

o [1]
Random Reads Random Writes

To understand what happened, I reran the write test and watched “ceph -s” output:

services:
mon: 3 daemons, quorum a,b,c (age 42m)
mgr: a(active, since 42m)
osd: 630 osds: 630 up (since 24m), 630 in (since 25m)
flags noscrub,nodeep-scrub

data:
pools: 2 pools, 131073 pgs
objects: 4.13M objects, 16 TiB
usage: 48 TiB used, 8.2 PiB / 8.2 PiB avail
pgs: 129422 activetclean
1651 activetclean+laggy

io:

client: @ B/s rd, 1.7 GiB/s wr, 1 op/s rd, 446 op/s wr

cL',’'so 14

A PARTIALLY OPERATIONAL DEATH STAR

As soon as I threw 504 FIO processes doing 4MB writes at the cluster, some of the PGs
started going active+clean+laggy. Performance tanked and the cluster didn't recover
from that state until the workload was completed. What's worse, more PGs went laggy
over time even though the throughput was only a small fraction of what the cluster
was capable of. Since then, we've found a couple of reports of laggy PGs on the mail-
ing list along with a couple of suggestions that might fix them. It's not clear if those
ideas would have helped here. We do know that IO will temporarily be paused when
PGs gointo a laggy state and that this happens because a replica hasn’t acknowledged
new leases from the primary in time. After discussing the issue with other Ceph devel-
opers, we think this could possibly be an issue with locking in the OSD or having lease
messages competing with work in the same async msgr threads.

Despite being distracted by the laggy PG issue, I wanted to refocus on hitting 1.0TiB/s.
Lack of sleep was finally catching up with me. At some point I had doubled the PG
count again to 256K, just to see if it had any effect at all on the laggy PG issue. That
put us solidly toward the upper end of the curve we showed earlier, though frankly,
I don't think it actually mattered much. I decided to switch back to the default OSD
shard counts and continue testing with 504 FIO client processes. I did however scale
the number of async messenger threads. There were two big takeaways. The first
is that dropping down to 1 async messenger allowed us to avoid PGs going laggy
and achieve “OK” write throughput with 504 clients. It also dramatically hurt the
performance of 4MB reads. The second: Ceph’s defaults were actually ideal for 4MB
reads. With 8 shards, 2 threads per shard, and 3 msgr threads, we finally broke 1TiB/s.
Here's the view I had at around 4 AM Monday morning as the final set of tests for the
night ran:

services:
mon: 3 daemons, quorum a,b,c (age 3@m)
mgr: a(active, since 30m)
osd: 630 osds: 630 up (since 12m), 63@ in (since 12m)
flags noscrub,nodeep-scrub

data:
pools: 2 pools, 262145 pgs
objects: 4.13M objects, 16 TiB
usage: 48 TiB used, 8.2 PiB / 8.2 PiB avail
pgs: 262145 active+clean

io:
client: 1.0 TiB/s rd, 6.1 KiB/s wr, 266.15k op/s rd, 6 op/s wr

and the graphs from the FIO results:

cL.,'so 15

https://www.mail-archive.com/ceph-users@ceph.io/msg15040.html
https://www.mail-archive.com/ceph-users@ceph.io/msg15040.html
https://docs.ceph.com/en/quincy/rados/operations/pg-states/

SLEEP; ERASURE CODING

Full Cluster Msgr Thread Scaling - FIO 4MB Throughput
LibRBD, 3X Rep, 256K PGs, 8 Shards, 2 Threads/Shard, 504 Client Procs, Reef RocksDB Tuning

[1 Msgr Thread 2 Msgr Thread 3 Msgr Thread

1000 GiB/s

800 GiB/s

a2 600GiB/s
-y
g

o 400 GiB/s
e
'_

200 GiB/s

Random Reads Random Writes

Full Cluster Msgr Thread Scaling - FIO 4KB IOPS
LibRBD, 3X Rep, 256K PGs, 8 Shards, 2 Threads/Shard, 504 Client Procs, Reef RocksDB Tuning

[1 Msgr Thread 2 Msgr Thread 3 Msgr Thread

30M

20M
%]
o
o

10M

om N
Random Reads Random Writes

Sleep; Erasure Coding

After finally seeing the magical “1.0 TiB/s" screen I had been waiting weeks to see, I
finally went to sleep. Nevertheless, I got up several hours later. There was still work
to be done. All of the testing we had done so far was with 3X replication, but the
customer would be migrating this hardware into an existing cluster deployed with
6+2 erasure coding. We needed to get some idea of what this cluster was capable of
in the configuration they would be using.

I reconfigured the cluster again and ran through new tests. I picked PG/shard/client
values from the earlier tests that appeared to work well. Performance was good, but
I saw that the async messenger threads were working very hard. I decided to try
increasing them beyond the defaults to see if they might help given the added network
traffic.

cL',’so 16

SLEEP; ERASURE CODING

Full Cluster Msgr Thread Scaling - FIO 4MB Throughput (EC62)
LibRBD, EC62, 128K PGs, 4 Shards, 2 Threads/Shard, 441 Client Procs, Reef RocksDB Tuning

B 3 Msgr Thread 4 Msgr Thread 5 Msgr Thread

500 GiB/s
400 GiB/s
300 GiB/s

200 GiB/s

Throughput

100 GiB/s

0 GiB/s

Random Reads Random Writes

Full Cluster Msgr Thread Scaling - FIO 4KB I0OPS (EC62)
LibRBD, EC62, 128K PGs, 4 Shards, 2 Threads/Shard, 441 Client Procs, Reef RocksDB Tuning

B 3 Msgr Thread 4 Msgr Thread 5 Msgr Thread

4M

3M
L 2™
o

N -

oM

Random Reads Random Writes

We could achieve well over 500GiB/s for reads and nearly 400GiB/s for writes with 4-5
async msgr threads. But why are the read results so much slower with EC than with
replication? With replication, the primary OSD for a PG only has to read local data
and send it to the client. The network overhead is essentially 1X. With 6+2 erasure
coding, the primary must read 5 of the 6 chunks from replicas before it can then send
the constructed object to the client. The overall network overhead for the request is
roughly (1 + 5/6)X'. That's why we see slightly better than half the performance of 3X
replication for reads. We have the opposite situation for writes. With 3X replication,
the client sends the object to the primary, which then further sends copies over the
network to two secondaries. This results in an aggregate network overhead of 3X. In
the EC case, we only need to send 7/8 chunks to the secondaries (almost, but not quite,
the same as the read case). For large writes, performance is actually faster.

IOPS however, are another story. For very small reads and writes, Ceph will contact all
participating OSDs in a PG for that object even when the data they store isn't relevant
for the operation. For instance, if you are doing 4K reads and the data you are inter-

V0riginally this article stated that 7/8 chunks had to be fetched for reads. The correct value is 5/6 chunks,
unless fast reads are enabled. In that case it would be 7/6 chunks. Thanks to Joshua Baergen for catching this!

cL.,'so 17

SLEEP; ERASURE CODING

ested inis entirely stored in a single chunk on one of the OSDs, Ceph will still fetch data
from all OSDs participating in the stripe. In the summer of 2023, Clyso resurrected a
PR from Xiaofei Cui that implements partial stripe reads for erasure coding to avoid
this extra work. The effect is dramatic:

FIO 4KB Random Read IOPS (16 Client)
KRBD, 6 Nodes, 2 NVMe/Node, 4096 PGs

@ Ceph Reef wip-osd-ec-partial-read

1.25M

1.00 M

0.75M
(%)
o
© os0M

0.25M .

0.00 M [

3X 2+2 EC 4+2 EC 8+3 EC

Replication Strategy

FIO 4KB Random Read Cycles/OP (16 Client)
KRBD, 6 Nodes, 2 NVMe/Node, 4096 PGs

[Ceph Reef wip-osd-ec-partial-read

3.00M

2.00 M
o
Q
172]
@
S
O 1.00M

0.00 M [.

3X 2+2 EC 4+2 EC 8+3 EC

Replication Strategy

It's not clear yet if we will be able to get this merged for Squid, though Radoslaw Zarzyn-

ski, core lead for the Ceph project, has offered to help try to get this over the finish
line.

cL',’so 18

https://github.com/ceph/ceph/pull/52746

SQUEEZING IN MSGR ENCRYPTION TESTING

Squeezing in Msgr Encryption Testing

Finally, we wanted to provide the customer with a rough idea of how much msgr-level
encryption would impact their cluster if they decided to use it. The adrenaline of the
previous night had long faded and I was dead tired at this point. I managed to run
through both 3X replication and 6+2 erasure coding tests with msgr v2 encryption
enabled and compared it against our previous test results.

Full Cluster Msgr Encryption - FIO 4MB Throughput
LibRBD, 128K PGs, Best Tuning Mode, 441 Client Processes

@ 3XUnencrypted 3XEncrypted [EC62 Unencrypted EC62 Encrypted
1000 GiB/s

800 GiB/s

600 GiB/s

400 GiB/s

200 GiB/s . .
0 GiB/s

Full Cluster Msgr Encryption - FIO 4KB IOPS
LibRBD, 3X Rep, 64K PGs, 378 Client Procs
[3XUnencrypted 3XEncrypted [EC62 Unencrypted EC62 Encrypted

Throughput

25M

20M

15M

IOPS

10M

5M

o - He_

The biggest hit is to large reads. They drop from ~1 TiB/s to around 750 GiB/s. Every-
thing else sees a more modest, though consistent hit. At this point, I had to stop. I
really wanted to do PG scaling tests and even kernel RBD tests. It was time, though, to
hand the systems back to the customer for re-imaging and then to one of my excellent
colleagues at Clyso for integration.

cL.,'so 19

FINALE

Finale

So what's happened with this cluster since the end of the testing? All hardware was
re-imaged and the new OSDs were deployed into the customer’s existing HDD clus-
ter. Dan’s upmap-remapped script is being used to control the migration process and
we've migrated around 80% of the existing data to the NVMe backed OSDs. By next
week, the cluster should be fully migrated to the new NVMe based nodes. We've opted
not to employ all of the tuning we've done here, at least not at first. Initially, we'll make
sure the cluster behaves well under the existing, mostly default, configuration. We
now have a mountain of data we can use to tune the system further if the customer
hits any performance issues.

Since there was a ton of data and charts here, I want to recap some of the highlights.
Here's an outline of the best numbers we were able to achieve on this cluster:

300SDs(3x) 1000SDs (3x) 320 OSDs (3x) 630 OSDs (3x) 630 OSDs (EC62)

Co-Located FIO No No No Yes Yes

4MB Read 63 GiB/s 214 GiB/s 635 GiB/s 1025 GiB/s 547 GiB/s
4MB Write 15 GiB/s 46 GiB/s 133 GiB/s 270 GiB/s 387 GiB/s
4KB Rand Read 1.9M IOPS 5.8M IOPS 16.6M IOPS 25.5M IOPS 3.4M IOPS
4KB Rand Write 248K IOPS 745K IOPS 2.4M IOPS 4.9M IOPS 936K IOPS

What's next? We need to figure out how to fix the laggy PG issue during writes. We
can't have Ceph falling apart when the write workload scales up. Beyond that, we
learned through this exercise that Ceph is perfectly capable of saturating 2x 100GbE
NICs. To push the throughput envelope further we will need 200GbE+ when using 10
NVMe drives per node or more. IOPS is more nuanced. We know that PG count can
have a big effect. We also know that the general OSD threading model is playing a
big role. We consistently hit a wall at around 400-600K random read IOPS per node
and we've seen it in multiple deployments. Part of this may be how the async msgr
interfaces with the kernel and part of this may be how OSD threads wake up when new
work is put into the shard queues. I've modified the OSD code in the past to achieve
better results under heavy load, but at the expense of low-load latency. Ultimately, I
suspect improving IOPS will take a multi-pronged approach and a rewrite of some of
the OSD threading code.

To my knowledge, these are the fastest single-cluster Ceph results ever published and
the first time a Ceph cluster has achieved 1 TiB/s. I think Ceph is capable of quite a bit
more. If you have a faster cluster out there, I encourage you to publish your results!
Thank you for reading, and if you have any questions or would like to talk more about
Ceph performance, please feel free to reach out!

Contact:
Email: research@clyso.com

Phone: +49 89 215 252 70

cL',’so 20

mailto:research@clyso.com

	Acknowledgments
	Cluster Setup
	Testing Setup
	A Note PG counts

	A Rough Start
	Spooky Behavior
	4MB Random Read
	Example tp_osd_tp Thread io_submit Wallclock Profile
	Blkparse Output - Good vs Bad

	The Three Fixes
	Fix One
	Fix Two
	Fix Three

	The First week of 2024
	Fate Smiles

	A Partially Operational Death Star
	Sleep; Erasure Coding
	Squeezing in Msgr Encryption Testing
	Finale

